

The Quadratic Formula

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

When To Use The Quadratic Formula

When solving an equation that shows a quadratic equal to zero. If you see, or can make, $ax^2 + bx + c = 0$, use it.

Example #1: Solve
$$x^2 + 8x + 12 = 0$$

 $a = 1$, $b = 8$, $c = 12$

$$\frac{-8 \pm \sqrt{8^2 - 4(1)(12)}}{2(1)} = \frac{-8 \pm \sqrt{16}}{2} = \frac{-8 \pm 4}{2} = -2 \text{ or } -6$$

What does the solution mean ...

Equation **Factoring** Only -2 & -6 (x + 2)(x + 6) = 0work in the equation $x^2 + 8x + 12 = 0$

Example #3: Solve $3x^2 + 5x + 4 = 0$ $\frac{-5\pm\sqrt{5^2-4(3)(4)}}{2(3)} = \frac{-5\pm\sqrt{-23}}{6}$ WHAT?

The number under the square root is called the discriminant. If negative, the solution is imaginary - meaning no real solution.

Equation **Factoring** NO CAN'T REAL **FACTOR SOLUTION**

What The Quadratic Formula Finds

The quadratic formula finds all solutions for $ax^2 + bx + c = 0$. These can also be called roots, x-intercepts, or zeros.

Example #2: Solve
$$2x^2 - 7x - 15 = 0$$

 $a = 2$, $b = -7$, $c = -15$

$$\frac{7 \pm \sqrt{7^2 - 4(2)(-15)}}{2(2)} = \frac{7 \pm \sqrt{169}}{4} = \frac{7 \pm 13}{4} = 5 \text{ or } \frac{-3}{2}$$

What does the solution mean ...

DISCRIMINANT

IF ...

 $b^2 - 4ac < 0$, then no real solutions $b^2 - 4ac = 0$, then there is only 1 solution $b^2 - 4ac > 0$, then there are 2 solutions

Try these (if a square root does not simplify nicely, you don't need to simplify) ...

1.
$$x^2 + 3x - 28 = -10$$
 2. $12x^2 - 17x - 5 = 0$ 3. $4x^2 - 3x + 5 = 0$

$$2. \quad 12x^2 - 17x - 5 = 0$$

$$3. \ 4x^2 - 3x + 5 = 0$$

$$4. \ \ 2x^2 + 8x + 3 = 6$$

$$5. \quad -5x^2 - 2 = 4x$$

4.
$$2x^2 + 8x + 3 = 6$$
 5. $-5x^2 - 2 = 4x$ 6. $3x^2 - 4x - 1 = 0$

The Quadratic Formula

ANSWER KEY

1.
$$x = -6$$
 and $x = 3$

2.
$$x = \frac{5}{3}$$
 and $x = -\frac{1}{4}$

3. No real solution

4.
$$x = \frac{-8 \pm \sqrt{88}}{4}$$
 or $\frac{-4 \pm \sqrt{22}}{2}$

5. No real solution

6.
$$x = \frac{4 \pm \sqrt{28}}{6}$$
 or $\frac{-2 \pm \sqrt{7}}{3}$