
©2017 www.hendermonger.com

The Scanner Methods

#1 .nextInt() Searches user entry for the next integer that is entered, returns integer (AND STOPS ONCE FOUND) …

 User Enters Computer Grabs

 67 67 … but does not grab the “enter” newline that user typed, stops at integer!

 67 67 … computer ignores all spaces and newlines and only grabs the integer!!!

 I am 67 ERROR … nextInt() can only ignore spaces/newlines and grab integers!

 67.8 ERROR … nextInt() has no memory for decimals, InputMismatchException!

67 9.4 67 … it got the integer and looks no further (short-circuit evaluation?)!

67 I am 67 … it got the integer and looks no further (short-circuit evaluation?)!

CRUCIAL NOTE: Once the scanner grabs the integer, IT STOPS THERE. This is very important!

#2 .nextDouble() Searches user entry for the next double that is entered, returns double (STOPS ONCE FOUND) …

 User Enters Computer Grabs

 3.14 3.14 … but does not grab the newline as it stops once the double is found!

 3.14 3.14 … the scanner ignores all leading spaces and only grabs the double!

 Pi is 3.14 ERROR … nextDouble() can only ignore spaces/newlines and grab doubles!

 3 3.0 … remember that integers can be placed into double variables!

 3.14 8 3.14 … it got the double and looks no further (short-circuit evaluation?)!

 3.14 is Pi 3.14 … it got the double and looks no further (short-circuit evaluation?)!

CRUCIAL NOTE: Once the scanner grabs the double, IT STOPS THERE. This is very important!

#3 Combination of .nextInt() and .nextDouble: Proof of the CRUCIAL NOTES shown above:

 Consider the following code: Scanner scan = new Scanner(System.in);

 System.out.print("Enter an integer followed by a double: ");

 int userInt = scan.nextInt();

 double userDouble = scan.nextDouble();

 System.out.println("You typed: "+userInt+" and "+userDouble);

 If the user types: 67 3.14

 The output will be: You typed 67 and 3.14

 If the user types: 67 //they hit “enter” after typing 67

 3.14

 The output will be: You typed 67 and 3.14 //this occurs since the 2nd nextInt() call

 //will pass over the newline to the double

#4 .nextLine() Starts grabbing everything until a newline occurs, returns String (and grabs the newline with it!)

 User Enters Computer Grabs

 67 67 … and the newline is also grabbed

 3.14 3.14 … and the newline is also grabbed

 Pi is 3.14 Pi is 3.14 … and the newline is also grabbed

 Java & * 34. 1 Java & * 34.1 … and the newline is also grabbed

©2017 www.hendermonger.com

#5 .next() Grabs the very next set of characters that are typed until the next space that is entered (no newline!)

 User Enters Computer Grabs

 67 67 … stops there, but 67 is a String (does not grab newline)

 3.14 3.14 … stops there, but 3.14 is a String (does not grab newline)

 Pi is 3.14 Pi … stops there, Pi is a String (does not grab newline)

Common Issues with Scanner Methods (Warning: .nextLine() can create confusion if you are not careful!) …

 Example #1 Consider the following code: Scanner scan = new Scanner(System.in);

 System.out.print("Enter first name: ");

 String userInt = scan.next();

 System.out.println("Enter last name: ");

 String user2 = scan.nextLine();

 System.out.println("You typed: "+userInt+" and "+user2);

 Here is the output window: Enter first name: Dr.

Enter last name:

You typed: Dr. and

IMPORTANT NOTE: The scan.next() grabbed the user entry of “Dr.” and then stopped. When

the scan.nextLine() is called it picks up where the scan.next() left off and

continues on to the newline … this means that the scan.nextLine() actually

just picked up nothing but the newline and therefore the user never even got

to enter their last name.

 Example #2 Consider the following Code: Scanner scan = new Scanner(System.in);

 System.out.print("Enter your age: ");

 int userInt = scan.nextInt();

 System.out.println("Enter full name: ");

 String userName = scan.nextLine();

 System.out.println("Hello: "+userName+" who is "+userInt);

 Here is the output window: Enter your age: 67 is me

Enter full name:

You typed: 67 and is me

IMPORTANT NOTE: The scan.nextInt() grabbed the 67 and then stopped there. There is no error

thrown even though the user typed text after the 67 since the scan.nextInt()

stops looking once it finds the 67. When the scan.nextLine() is called, it just

picks up at the end of the 67. It finds a space and continues until the end of

the line … so it finds “ is me” and stores it as the last name. The user never

even gets to enter their last name!

To avoid the .nextLine() issues, consider doing one of the following options …

1. Have the user enter all text first and then collect numbers (this avoids any # scan “stalls”).

2. Use an extra .nextLine() between reading a number and reading text so that you grab the newline after the

user’s entered number (integer or double).

